電磁気学

偏光状態の変化 その2

前回(■)は光の反射角および屈折角を導出した. それによると反射角および屈折角は光の偏光状態には依存せず, 特に反射角は入射角のみに依存する (これは今回の話とは関係ないのだが, もちろん屈折角は光の波長などには依存する). しかし反射光および透過…

偏光状態の変化 その1

「光学(optics)」とは, 光にはどういう性質があるか?, また光と物質はどのような相互作用をするか?を取り扱う学問である. 光学には電磁気学や量子力学と密接な関連があるが, ぼく自身そんな難しいことはわからない. まあこの記事の続きを書くことをモチ…

電子ビームを収束させる(アインツェルレンズ)

今回は, 静電レンズ(Wikipedia: 電子レンズ)のうち, 特に「アインツェルレンズ(Einzel lens, en.Wikipedia: Einzel lens)」 と呼ばれるものについて書きたいと思う. このようなものを考える動機については, 電子ビームを曲げつつ収束させる を読んで頂き…

3次元の静電位 その2(境界値問題4)

今日も懲りずに3次元空間内の電位を求めていきたい. 問題設定 図1 中空円筒電極の形状

3次元の静電位 その1(境界値問題3)

今日は3次元空間における電位を求めたい. 1ヶ月ほど前に, コンデンサの端での電位について少し触れた(■). しかしそのときは各位置での電位は詳しくは必要なかったし, それ以外の部分をテーマにしていたので, 電位の求め方はかなり適当だったと思う. そこで…

電子ビームを曲げつつ収束させる

電子ビームなどの荷電粒子ビームには, 「自己発散(self-defocusing)」と呼ばれる問題がある(self-broadeningでも同じ意味だと思う). これは, ビームを構成する粒子がCoulomb力によりお互いに反発しあうため, ビームが空間を進む間に広がってしまうという…

電子ビームを曲げる

今回は青少年のハートをくすぐる「ビーム」について書こうと思う. ただしビームといっても様々な種類がある(Wikipedia: ビーム). 今回取り扱おうと思っているのは電子のビームであるが, 例えば太陽光線やレーザー光線もビームの一種である. 電子ビームの最…