2次元の熱平衡(境界値問題2)

前回()は1次元の熱平衡について, 基礎方程式の導出から行った.
これは全て今回のための準備で, 今回は2次元の熱平衡, つまり金属板を加熱したときにどのような温度分布に行き着くかを求めたい.

続きを読む

1次元の熱平衡(境界値問題1)

今回は題の通り, 1次元での熱平衡について.
つまり, 金属線を加熱したときに, 最終的にどのような温度分布になるのかを考えたい.
これはPoisson方程式(Wikipedia: ポアソン方程式)またはHelmholtz方程式(Wikipedia: ヘルムホルツ方程式)と呼ばれる式によって知ることができるのだが, 個人的に納得のいかないところがあり, 前回の更新から少し間が空いてしまった.
決してグラブっていたわけではない.

続きを読む

電子ビームを曲げつつ収束させる

電子ビームなどの荷電粒子ビームには, 「自己発散(self-defocusing)」と呼ばれる問題がある(self-broadeningでも同じ意味だと思う).
これは, ビームを構成する粒子がCoulomb力によりお互いに反発しあうため, ビームが空間を進む間に広がってしまうという現象を指す.
この自己発散現象のために, 荷電粒子ビームを取り扱う際にはビームを収束させるレンズのようなものが必要になる.
前回()は平行平板コンデンサで電子ビームをどれだけ曲げられるかについて議論したが, 今回は平行平板コンデンサで電子ビームを収束させる.

続きを読む